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ABSTRACT 

In this paper the size-biased Poisson Janardan distribution (SBPJD) is introduced. The probability distribution of 

size-biased Poisson Janardan distribution is obtained by considering size-biased form of the Poisson distribution and 

Janardan distribution without its size-biased form. Some of its basic properties are derived and it is found that size-biased 

Poisson Lindley distribution given by Srivastava and and Adhikari, is a special case of the size-biased Poisson Janardan 

distribution. The equations of the method of moment and maximum likelihood estimators are obtained to find the 

estimators of the parameters of the size-biased Poisson Janardan distribution.  
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1. INTRODUCTION  
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Lindley (1958) introduced a one parameter distribution named Lindley distribution with pdf  
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It can be seen that for 1=α , the Janardan distribution (1.1) is becomes Lindley distribution (1.2).  

Shanker et al (2014) obtained the discrete Poisson Janardan distribution (PJD) as  
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For 1=α , the PJD in (1.3) is becomes the Poisson Lindley distribution (PLD) introduced by Sankaran (1970).  
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The pdf of size-biased Poisson distribution (SBPD) is  
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Adhikari and Srivastava (2013) introduced the size-biased Poisson Lindley distribution (SBPLD) which is 

obtained by considering the size-biased Poisson distribution with Lindley distribution without considering its size-biased 

form. Then the pdf of SBPLD  
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Adhikari and Srivastava (2014) proposed Poisson size-biased Lindley distribution (PSBLD) considering Poisson 

without its size-biased version and size-biased version of Lindley. Ghitany and Al-Mutairi (2008) proposed the size-biased 

Poisson Lindley distribution which is obtained by considering the size-biased version of Poisson Lindley distribution. They 

discussed the estimation methods for the size-biased Poisson Lindley distribution and its applications on real data sets.  

Suppose that the original values of x comes from a distribution with pdf ( )xf0 and the values of x recorded 

according to a probability re-weighted by a weight function ( ) ,0>xw  then the pdf of x  
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Rao (1965) introduced this type of distributions and named them weighted distributions. For ( ) ,xxw = is called 

size-biased or length-biased distribution. Patil and Rao (1978) showed that the size-biased distributions occur in a usual 

way in many sampling problems. Patil and Ord (1975) discussed size-biased and related weighted distributions in sampling 

procedures. Patil and Rao (1977) discussed the applications of size-biased distributions in real-life problems.  

2. SIZE-BIASED POISSON JANARDAN DISTRIBUTION (SBPJD) 

Suppose that λ of the size biased Poisson distribution in (1.4) follows the Janardan distribution in (1.1). Then the 

mixture of size-biased Poisson and two parameter Janardan distributions is obtained as  
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The size-biased Poisson Janardan distribution (SBPJD) in (2.1) is reduces to size-biased Poisson Lindley 

distribution (SBPLD) in (1.5).  
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Figure 1: Plot of Pdf SBPLD For .8,2,1&2 == θα  

 

Figure 2: Plot of pdf SBPLD For .1&8,3,1,5.0 == θα  

From Figure 1 & 2 it can be seen that the SBPJD is positively skewed. Figure 1 shows that for fix value of 

2=α and 8=θ the pdf has high peaked with longer right tail and for 2&1=θ the pdf is going to be flatter. Figure 2 

shows that for fix value of 1=θ & 5.0=α the pdf is high peaked with longer right tail and for 8&3=α the pdf is 

going to be flatter. Moreover for 1=α the pdf is SBPLD.  

Table 1: The Moments of the SBPJD and SBPLD 
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Table 1 shows the first four moments, mean, variance and of the SBPJD and SBPLD 

Some more properties of the size-biased Poisson Janardan distribution are 

i. Since  
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It follows from (2.2) that 2σµ <=> for different values of θα & , that means SBPJD is over-dispersed/equi-

dispersed/under-dispersed for different values of .& θα  

Table 2: Dispersion of the SBPJD 

2σµ − ,  
For 1=α  

2σµ − , 
For 1=θ  

05.0=θ  -798.0930 0=α  1 

5.0=θ  -6.5556 0001.0=α  -0.9999 

1=θ  -0.7500 001.0=α  -0.9999 

5.1=θ  0.4311 005.0=α  -0.9999 

2=θ  0.6111 5.0=α  -0.6 

8=θ  0.9811 2=α  -1.8 

10=θ  0.9883 10=α  -2.93 

15=θ  0.9950 

  20=θ  0.9973 

100=θ  0.9999 1≅  
 

From the Table 2 it is observed that for fix value of 1=α , the SBPJD is over-dispersed as the value of θ is 

increasing but the SBPJD is under-dispersed as the value ofθ is decreasing. For fix value of 1=θ , as the value of α
increases the SBPJD is under-dispersed and the amount of dispersion increase as well. Therefore it can be seen that for 

1,100 == αθ and 0,1 == αθ , the SBPJD is qui-dispersed.  

ii. Since  
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It can be seen that eq(2.3) is a decreasing function in x, ……… ( )θ;xf  is log concave. Therefore the SBPJD is 

unimodal,  

The mode of the SBPJD is  
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For 1=α it becomes the mode of the SBPLD.  

3. METHOD OF MOMENTS (MOM) 

Let a random sample of size n from SBPJD with pdf (2.1), the MOM estimates of the αθ &  are respectively  
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4. METHOD OF MAXIMUM LIKELIHOOD ESTIMATOR (MLE) 

Let a random sample of size n from SBPJD with pdf (2.1), the ML estimates of the αθ &  are respectively  
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The ML estimate of θ̂  and α̂  are obtained by the solution of the non-linear equations  
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